redhat

Kerberos

Zbyšek MRÁZ QE BaseOS Security

About

- principles
- usage & application
- ticket flow

NotAbout

- writing applications
- cryptography
- number theories

WhatIs

- MIT developed
- implementations
 - MIT krb5
 - Heimdal
 - Windows AD

WhatIs #2

- AUTHENTICATION
 - act of verifying identity
 - process of proving identity to service
- Benefits
 - Standards based strong authentication system
 - AES-256 -128, arcfour, 3DES
 - Various OS support
 - No password sent thru the network
 - Single sign-on

WorksWith (included in MIT implementation)

- eklogin
- gssftp
- krsh
- kshell
- ksu
- telnet

WorksWith (supported)

- ssh
- httpd + modules (perl, python, ruby)
- nfs
- versioning (git, svn, cvs)
- bind
- cups
- proxy
- mail (smtp, pop, imap)

HowWorks

- Client wants to prove his identity to AS
- User ID = name + realm
- AS checks the database
 - Krb (berkleydb)
 - Idap

• Client enters the password to decrypt the TGT

Timestamp: 8 Hours

- Client ID
- Client network address
- Ticket validity period
- client/TGS session key

- The client submits the ticket-granting ticket mentioning the service name to the ticket-granting server (TGS), to get authenticated.
- KDC
 - key distribution center
 - KDC shares a key with each of all the other parties
 - The KDC produces a ticket based on a server key.

- The TGS creates an encrypted key with a timestamp, and grants the client a service ticket
- The client decrypts the ticket, tells the TGS it has done so, and then sends its own encrypted key to the service

• The service decrypts the key, and makes sure the timestamp is still valid.

- The client decrypts the ticket. If the keys are still valid, communication is initiated between client and server.
- After the communication is made between the client and server, no further need of transmitting logon information is needed. The client is authenticated until the session expires.

klist

[16:29:17] neo@lexi:"\$ /opt/mit-krb5/klist -cafe Ticket cache: FILE:/tmp/krb5cc_1001 Default principal: zbysek@MRAZ.COM Valid starting Expires Service principal 02/08/11 16:07:59 02/09/11 02:07:59 krbtat/MRAZ.COM@MRAZ.COM renew until 02/08/11 16:07:59, Flags: FRI Etype (skey, tkt): aes256-cts-hmac-sha1-96, aes256-cts-hmac-sha1-96 Addresses: lexi.mraz.com. 100.20.40.50 02/08/11 16:16:42 02/09/11 02:07:59 imap/mail.mraz.com@MRAZ.COM Flags: T, Etype (skey, tkt): aes256-cts-hmac-sha1-96, aes256-cts-hmac-sha1-96 Addresses: lexi.mraz.com, 100.20.40.50 02/08/11 16:28:35 02/09/11 02:07:59 HTTP/devel.mraz.com@MRAZ.COM Flags: T, Etype (skey, tkt): aes256-cts-hmac-sha1-96, aes256-cts-hmac-sha1-96 Addresses: lexi.mraz.com, 100.20.40.50 02/08/11 16:29:21 02/09/11 02:07:59 host/s01.mraz.com@MRAZ.COM renew until 02/08/11 16:07:59, Flags: FRT Etype (skey, tkt): aes256-cts-hmac-sha1-96, aes256-cts-hmac-sha1-96 Addresses: lexi.mraz.com, 100.20.40.50 02/08/11 16:35:02 02/09/11 02:07:59 cvs/cvs.devel.mraz.com@MRAZ.COM Flags: T, Etype (skey, tkt): aes256-cts-hmac-sha1-96, aes2<u>56-cts-hmac-sha1-96</u> Addresses: lexi.mraz.com, 100.20.40.50 [16:37:22] neo@lexi:~\$

WhatIsNot

- AUTHORIZATION
- Disadvantages
 - The only KDC handles authentication (might be solved by propagation to slaves)
 - Clock synchronization up to 10 minutes (might be solved by proper time synchronization
 - No unencrypted service should be used

redhat

Thank you

• questions

HappyEnding

© www.123rf.com