
CDI* for Seam 2 developers

Brief migration notes
or what does CDI mean for Seam 2 developer

Martin Kouba
Red Hat 2012

* Contexts and Dependency Injection for the Java EE platform

 2

Source available at github:

https://github.com/mkouba/cdi4seam2dev

● presentation in PDF format
● example source code

https://github.com/mkouba/cdi4seam2dev

Seam 2 → CDI 3/40

Agenda

1. In relation to... a little bit of history

2. Seam 2 vs CDI → the big picture

3. Component models

4. Bijection vs dependency injection (live demo :-)

5. Factory methods vs producers

6. Events

7. Interceptors (and decorators)

8. Questions

Seam 2 → CDI 4/40

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Seam 1.0 beta1

Seam 1.0.0.GA

Seam 2.0.0.GA

CDI 1.0 (JSR 299) Early Draft Review

Seam 2.1.0.GA

CDI 1.0 (JSR 299) Public Review

Seam 2.2.0.GA

CDI 1.0 (JSR 299) & Java EE 6 (JSR 316) Final Release

Seam 2.3.0.ALPHA

CDI 1.1 (JSR 346) Early Draft Review

Seam 3.0.0.Final

Seam 3.1.0.Final

In relation to
… a little bit of history

?

Seam 2 → CDI 5/40

Seam 2 vs CDI → the big picture

 Seam 2
◽ is an application

framework

◽ built to “fix holes/fill gaps”
in specification (Java EE 5)

◽ the idea of “Reinvesting
in Java EE” → fixes
should find way back into
the next revision of the
standards

 CDI
◽ is a JCP specification

◽ originally Web Beans

◽ version 1.0 (JSR 299) is a
part of Java EE 6 (JSR 316)

◽ implementations include:

– Weld (RI)

– Apache OpenWebBeans

– CanDI

◽ Seam 3 is a set of mo-
dules which extend CDI

Seam 2 → CDI 6/40

Seam 2 vs CDI → the big picture
Seam 2 functionalities

Core

● components

● scopes and contexts

● bijection

● events

● interceptors…

Out of the box solutions

● security

● i18n

● e-mail, ...

Integration stuff

● Java EE (JSF, EJB, JAX-WS, ...)

● JBoss projects (RESTEasy, jBPM, ...)

● Third party projects (iText, Quartz

Scheduler, ...)

Tools
● seam-gen

Seam 2 → CDI 7/40

Seam 2 vs CDI → the big picture

CDI covers

Core

● components

● scopes and contexts

● bijection

● events

● interceptors…
Out of the box solutions

● security

● i18n

● e-mail

Integration stuff

● Java EE (JSF, EJB, JAX-WS, ...)

● JBoss projects (RESTEasy, jBPM, ...)

● Third party projects (iText, Quartz

Scheduler, ...)

Tools

● seam-gen

Seam 2 → CDI 8/40

Seam 2 vs CDI → the big picture

 Summary:
◽ CDI covers most of Seam 2 core functionalities in

a standardized, typesafe and extensible way

Seam 2 → CDI 9/40

And now for something
completely different...

Component models

Seam 2 → CDI 10/40

Container

What is a component?

 component is a source of contextual objects

 contextual objects define application state and/or
logic

 components are usually configured with metadata
(annotations, XML)

component

component

contextual object

component contextual object

contextual object

Seam 2 → CDI 11/40

Component models

Diff #1 - terminology
 Seam → components

 CDI → beans

Seam 2 → CDI 12/40

Component models

Diff #2 – metadata definition
 Seam
◽ define metadata via

annotaions and XML

 CDI
◽ define metadata via

annotaions and
programmatically in
portable extension
(during app initialization)

◽ XML configuration is not
covered by spec → use
JBoss Solder 1

1 http://seamframework.org/Seam3/Solder

http://seamframework.org/Seam3/Solder

Seam 2 → CDI 13/40

Component models

Diff #3 – component types
 Seam

◽ Session bean

◽ JavaBean

◽ Factory method

◽ restricted:

– Message-driven bean
● may not be bound to a

Seam context
– Entity bean

● do not support bijection
or context demarcation

 CDI
◽ Session bean

◽ Managed bean

◽ Producer method/field

◽ Resource

– represents a reference
to a Java EE resource

◽ a portable extension
may provide other
kinds of beans

Seam 2 → CDI 14/40

Component models

Diff #4 – component names
 Seam
◽ each component must

have the name defined
explicitly via @Name or XML
descriptor,

◽ name is string-based and
unique across the
application,

◽ name is involved in bi-
jection lookup
mechanism,

◽ component is automatically
available in EL expressions

 CDI
◽ beans have no name by

default (typesafe
resolution),

◽ though may have name
defined via @Named (EL
name resolution – suitable
only for UI),

◽ and if so, they are available
in EL

Seam 2 → CDI 15/40

Component models

Diff #5 – registration process
 Seam
◽ scans archives which

contain seam.properties
or components.xml at
specified location

◽ each component has to be
marked explicitly in order
to be recognized by the
container (@Name or XML
descriptor)

 CDI
◽ scans archives and folders

on the classpath which
contain beans.xml at
specified location

◽ every Java class in the bean
archive that meets certain
conditions is implicitly
recognized as a bean - no
special declaration is
required1

1 CDI 1.0 doesn't solve explicit exclusion (either use some extension
like JBoss Solder or wait for CDI 1.1 :-)

Seam 2 → CDI 16/40

Component models

Diff #6 – scopes and contexts
 Seam

◽ fixed set of contexts1,

◽ the concept of contextual
variables

◽ @Scope annotation with
values of the ScopeType
enumeration,

◽ contexts are accessible
for clients directly (rw)

 CDI
◽ set of built-in

contexts1,

◽ this set may be extended

◽ each scope has its own
annotation

◽ no built-in business
process, page, method
and stateless scope

◽ dependent pseudo-scope

◽ CDI contexts cannot be
modified by clients

1 http://seamframework.org/Seam3/Seam2ToSeam3MigrationNotes

http://seamframework.org/Seam3/Seam2ToSeam3MigrationNotes

Seam 2 → CDI 17/40

Component models

Diff #7 – basic metadata
 Seam
◽ name → @Name

◽ scope → @Scope

◽ roles → @Roles

– single Java class to act as
a base for multiple
components (comprises
name and a scope)

◽ conditional installation →
@Install

 CDI
◽ name (optional) → @Named

◽ scope →
@RequestScoped, ...

◽ set of bean types

◽ set of qualifiers

– used to distinguish
between multiple
components sharing the
same bean type

◽ conditional installation →
@Alternative,
@Specializes, @Veto1,
@Requires1

1 CDI 1.1 (JSR 346)

Seam 2 → CDI 18/40

Component models

Diff #8 – asynchronicity
 Seam
◽ supports asynchronous

method invocation via
Dispatcher component

– EJB TimerService,

– or Quartz Scheduler
implementation

 CDI
◽ does not specify

asynchronous method
invocation

– try using EJB
@Asynchronous observer
methods

Seam 2 → CDI 19/40

Inversion of Control

Seam bijection vs
CDI dependency injection

Seam 2 → CDI 20/40

IoC

Seam bijection
 bijection is performed dynamically via an

interceptor every time a component method is
invoked
◽ bidirectional → injection and outjection

◽ injection points: setter method and instance variable

◽ component name is always involved in lookup (!)

◽ null may be a result of Seam bijection (!)

◽ components are not initialized automatically

– @In(create=true), @AutoCreate

 Seam uses also static injection configuring
components via property settings

Seam 2 → CDI 21/40

IoC

Seam bijection

injection

component invocation

outjection

 disinjection

Values are injected
(lookup in stateful

contexts).

Set component
attributes back out to

the context.

Injection points are
disinjected (set to

null).

Seam 2 → CDI 22/40

IoC

CDI approach
 static injection - performed only once per

component lifecycle
◽ when creating contextual objects

◽ injection points: constructor, field, initializer method

◽ typesafe resolution - the process of matching a bean to an
injection point

– bean is assignable to a given injection point if it has a bean
type that matches the required type has all the
required qualifiers

◽ ambiguous and unsatisfied dependency is an error

◽ no outjection and disinjection

◽ beans are initialized automatically

Seam 2 → CDI 23/40

IoC

Programmatic lookup
 Seam 2

◽ static method
Component.getInstance()
is often used

– for optimization →
@BypassInterceptors is
not suitable everywhere

– in integration code

 CDI
◽ is possible via built-in

bean Instance1 (requires
injection though)

◽ or BeanManager2

◽ should not be needed in
application code
anyway :-)

1 javax.enterprise.inject.Instance
2 javax.enterprise.inject.spi.BeanManager

Seam 2 → CDI 24/40

IoC

Seam bijection vs CDI injection
 time for a very simple live demo!

Seam 2 → CDI 25/40

IoC

Java EE integration
 Seam

◽ only Seam components
support bijection

 CDI
◽ all Java EE 6 components

supporting injection1 may
inject beans via the
dependency injection
service,

◽ however their lifecycle is
not managed by CDI;

◽ components supporting
injection include: servlets,
servlet filters and
listeners, JSP tag handlers,
JAX-WS endpoints, ...

1 See JSR 316 – EE.5.2.5 Annotations and Injection

Seam 2 → CDI 26/40

Factory methods vs
producer methods/fields

Seam 2 → CDI 27/40

Factory methods vs producer methods/fields
Diff #1 - names
 Seam

◽ component name
required

– use @Factory.value() ,

– if not specified → derived
from method name

 CDI
◽ name not required

– typesafe resolution :-)

– may be assigned via
@Named

Seam 2 → CDI 28/40

Factory methods vs producer methods/fields
Diff #2 – parameter injection
 Seam

◽ not available

 CDI
◽ producer method → all

parameters are injection
points

Seam 2 → CDI 29/40

Factory methods vs producer methods/fields
Diff #3 - outjection
 Seam

◽ instead of returning
value, factory method
may have void return
type and use outjection
to set variables into the
context

 CDI
◽ not available

Seam 2 → CDI 30/40

Factory methods vs producer methods/fields
Diff #4 – producer fields
 Seam

◽ not available

 CDI
◽ a producer field is

a simpler alternative to a
producer method

◽ usefull for Java EE
component environment
injection

Seam 2 → CDI 31/40

Events

Seam 2 → CDI 32/40

Events
Diff #1 – event type
 Seam

◽ type is string-based

◽ parameters are optional

 CDI
◽ event is an instance of a

concrete Java class

– the event types include all
superclasses and
interfaces of the runtime
class of the event object
→ observer resolution is
typesafe

Seam 2 → CDI 33/40

Events
Diff #2 – raising/firing an event
 Seam

◽ raise via Events
component,

◽ or declaratively

– use an annotation
@RaiseEvent

– navigation rules
configuration; pages.xml

 CDI
◽ fire via an instance of the
Event1 interface,

◽ or BeanManager

◽ it's not possible to fire
declaratively

1 javax.enterprise.event.Event
2 javax.enterprise.inject.spi.BeanManager

Seam 2 → CDI 34/40

Events
Diff #3 – features
 Seam

◽ asynchronous and timed
events via Dispatcher
component

– EJB TimerService,

– or Quartz Scheduler
impl

◽ transaction aware events

 CDI
◽ does not specify

asynchronous events

– try using EJB
@Asynchronous observer
methods

◽ does not specify timed
events

◽ transaction aware events

Seam 2 → CDI 35/40

Interceptors

Seam 2 → CDI 36/40

Interceptors
Diff #1 – the concept
 Seam

◽ much of the functionality
of Seam is implemented
as a set of built-in Seam
interceptors1

◽ Seam defines

– its own API to create
custom interceptor for
JavaBean components,

– and EJB 3.0 “adaptation
layer”

 CDI
◽ follows Interceptors 1.1

specification

– part of EJB 3.1 spec2

◽ defines a typesafe
mechanism for
associating interceptors to
beans using interceptor
bindings

1 See org.jboss.seam.core.Init#DEFAULT_INTERCEPTORS
2 JSR 318

Seam 2 → CDI 37/40

Interceptors
Diff #2 – binding and enablement
 Seam

◽ bind to a component with
custom annotation

◽ interceptors are registered
and enabled automatically

◽ order is defined via
@Interceptor annotation
– around, within attributes

 CDI
◽ bind to a bean with

custom annotation
◽ an interceptor must be

explicitly enabled by
listing its class under the
<interceptors> element
of the beans.xml file for
each bean archive1

◽ the order of the
interceptor declarations
determines the
interceptor ordering

1 https://issues.jboss.org/browse/CDI-18

https://issues.jboss.org/browse/CDI-18

Seam 2 → CDI 38/40

Interceptors
Diff #3 – decorators
 Seam

◽ no such functionality is
supported

 CDI
◽ similar to interceptors1,

◽ but don't have the
generality of an
interceptor,

◽ intercept invocations only
for a certain interface,

◽ and directly implement
operations with business
semantics

1 See JSR 299 - Chapter 8. Decorators

Seam 2 → CDI 39/40

Questions?

Seam 2 → CDI 40/40

The End

Thanks for listening

Resources:
● Seam 2 documentation: http://docs.jboss.org/seam/latest/reference/en-US/html/

● Seam 2 to Seam 3 Migration Notes:
http://seamframework.org/Seam3/Seam2ToSeam3MigrationNotes

● CDI Specification (JSR 299): http://jcp.org/en/jsr/summary?id=299

● Weld documentation: http://docs.jboss.org/weld/reference/latest/en-US/html/

● Java EE 6 Specification (JSR 316): http://jcp.org/en/jsr/summary?id=316

● Weld, CDI and Proxies:
https://community.jboss.org/blogs/stuartdouglas/2010/10/12/weld-cdi-and-proxies

http://docs.jboss.org/seam/latest/reference/en-US/html/
http://seamframework.org/Seam3/Seam2ToSeam3MigrationNotes
http://jcp.org/en/jsr/summary?id=299
http://docs.jboss.org/weld/reference/latest/en-US/html/
http://jcp.org/en/jsr/summary?id=316
https://community.jboss.org/blogs/stuartdouglas/2010/10/12/weld-cdi-and-proxies

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

