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Source available at github:

https://github.com/mkouba/cdi4seam2dev

● presentation in PDF format
● example source code

https://github.com/mkouba/cdi4seam2dev
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Agenda

1. In relation to... a little bit of history

2. Seam 2 vs CDI → the big picture

3. Component models

4. Bijection vs dependency injection (live demo :-)

5. Factory methods vs producers

6. Events

7. Interceptors (and decorators)

8. Questions
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Seam 1.0 beta1

Seam 1.0.0.GA

Seam 2.0.0.GA

CDI 1.0 (JSR 299) Early Draft Review

Seam 2.1.0.GA

CDI 1.0 (JSR 299) Public Review

Seam 2.2.0.GA

CDI 1.0 (JSR 299) & Java EE 6 (JSR 316) Final Release

Seam 2.3.0.ALPHA

CDI 1.1 (JSR 346) Early Draft Review

Seam 3.0.0.Final

Seam 3.1.0.Final

In relation to
… a little bit of history

?
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Seam 2 vs CDI → the big picture

 Seam 2
◽ is an application 

framework

◽ built to “fix holes/fill gaps” 
in specification (Java EE 5)

◽ the idea of “Reinvesting 
in Java EE” → fixes 
should find way back into 
the next revision of the 
standards

 CDI
◽ is a JCP specification

◽ originally Web Beans

◽ version 1.0 (JSR 299) is a 
part of Java EE 6 (JSR 316)

◽ implementations include:

– Weld (RI)

– Apache OpenWebBeans

– CanDI

◽ Seam 3 is a set of mo-
dules which extend CDI
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Seam 2 vs CDI → the big picture
Seam 2 functionalities

Core

● components

● scopes and contexts

● bijection

● events

● interceptors…

Out of the box solutions

● security

● i18n

● e-mail, ...

Integration stuff

● Java EE (JSF, EJB, JAX-WS, ...)

● JBoss projects (RESTEasy, jBPM, ...)

● Third party projects (iText, Quartz 

Scheduler, ...)

Tools
● seam-gen
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Seam 2 vs CDI → the big picture

CDI covers

Core

● components

● scopes and contexts

● bijection

● events

● interceptors…
Out of the box solutions

● security

● i18n

● e-mail

Integration stuff

● Java EE (JSF, EJB, JAX-WS, ...)

● JBoss projects (RESTEasy, jBPM, ...)

● Third party projects (iText, Quartz 

Scheduler, ...)

Tools

● seam-gen
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Seam 2 vs CDI → the big picture

 Summary:
◽ CDI covers most of Seam 2 core functionalities in 

a standardized, typesafe and extensible way
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And now for something 
completely different... 

Component models 
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Container

What is a component?

 component is a source of contextual objects

 contextual objects define application state and/or 
logic

 components are usually configured with metadata 
(annotations, XML)

component

component

contextual object

component contextual object

contextual object
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Component models

Diff #1 - terminology
 Seam → components

 CDI → beans 
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Component models

Diff #2 – metadata definition
 Seam
◽ define metadata via 

annotaions and XML

 CDI
◽ define metadata via 

annotaions and 
programmatically in 
portable extension 
(during app initialization)

◽ XML configuration is not 
covered by spec → use 
JBoss Solder 1

1 http://seamframework.org/Seam3/Solder

http://seamframework.org/Seam3/Solder
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Component models

Diff #3 – component types
 Seam

◽ Session bean

◽ JavaBean

◽ Factory method

◽ restricted:

– Message-driven bean
● may not be bound to a 

Seam context
– Entity bean

● do not support bijection 
or context demarcation

 CDI
◽ Session bean

◽ Managed bean

◽ Producer method/field

◽ Resource

– represents a reference 
to a Java EE resource

◽ a portable extension 
may provide other 
kinds of beans
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Component models

Diff #4 – component names
 Seam
◽ each component must 

have the name defined 
explicitly via @Name or XML 
descriptor,

◽ name is string-based and 
unique across the 
application,

◽ name is involved in bi-
jection lookup 
mechanism,

◽ component is automatically 
available in EL expressions

 CDI
◽ beans have no name by 

default (typesafe 
resolution),

◽ though may have name 
defined via @Named (EL 
name resolution – suitable 
only for UI),

◽ and if so, they are available 
in EL
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Component models

Diff #5 – registration process
 Seam
◽ scans archives which 

contain seam.properties 
or components.xml at 
specified location

◽ each component has to be 
marked explicitly in order 
to be recognized by the 
container (@Name or XML 
descriptor)

 CDI
◽ scans archives and folders 

on the classpath which 
contain beans.xml at 
specified location

◽ every Java class in the bean 
archive that meets certain 
conditions is implicitly 
recognized as a bean - no 
special declaration is 
required1

1 CDI 1.0 doesn't solve explicit exclusion (either use some extension 
like JBoss Solder or wait for CDI 1.1 :-)
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Component models

Diff #6 – scopes and contexts
 Seam

◽ fixed set of contexts1, 

◽ the concept of contextual 
variables

◽ @Scope annotation with 
values of the ScopeType 
enumeration,

◽ contexts are accessible 
for clients directly (rw)

 CDI
◽ set of built-in 

contexts1,

◽ this set may be extended 

◽ each scope has its own 
annotation

◽ no built-in business 
process, page, method 
and stateless scope

◽ dependent pseudo-scope

◽ CDI contexts cannot be 
modified by clients

1 http://seamframework.org/Seam3/Seam2ToSeam3MigrationNotes

http://seamframework.org/Seam3/Seam2ToSeam3MigrationNotes


Seam 2 → CDI 17/40

Component models

Diff #7 – basic metadata
 Seam
◽ name → @Name

◽ scope → @Scope

◽ roles → @Roles

– single Java class to act as 
a base for multiple 
components (comprises 
name and a scope)

◽ conditional installation → 
@Install

 CDI
◽ name (optional) → @Named

◽ scope → 
@RequestScoped, ...

◽ set of bean types

◽ set of qualifiers

– used to distinguish 
between multiple 
components sharing the 
same bean type

◽ conditional installation → 
@Alternative, 
@Specializes, @Veto1, 
@Requires1

1 CDI 1.1 (JSR 346)
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Component models

Diff #8 – asynchronicity
 Seam
◽ supports asynchronous 

method invocation via 
Dispatcher component

– EJB TimerService,

– or Quartz Scheduler 
implementation

 CDI
◽ does not specify 

asynchronous method 
invocation

– try using EJB 
@Asynchronous observer 
methods
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Inversion of Control

Seam bijection vs 
CDI dependency injection



Seam 2 → CDI 20/40

IoC

Seam bijection
 bijection is performed dynamically via an 

interceptor every time a component method is 
invoked
◽ bidirectional → injection and outjection

◽ injection points: setter method and instance variable

◽ component name is always involved in lookup (!)

◽ null may be a result of Seam bijection (!)

◽ components are not initialized automatically

– @In(create=true), @AutoCreate

 Seam uses also static injection configuring 
components via property settings
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IoC

Seam bijection

injection

component invocation

outjection

 disinjection

Values are injected 
(lookup in stateful 

contexts).

Set component 
attributes back out to 

the context.

Injection points are 
disinjected (set to 

null).
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IoC

CDI approach
 static injection - performed only once per 

component lifecycle
◽ when creating contextual objects

◽ injection points: constructor, field, initializer method

◽ typesafe resolution - the process of matching a bean to an 
injection point

– bean is assignable to a given injection point if it has a bean 
type that matches the required type has all the 
required qualifiers

◽ ambiguous and unsatisfied dependency is an error

◽ no outjection and disinjection

◽ beans are initialized automatically
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IoC

Programmatic lookup
 Seam 2

◽ static method 
Component.getInstance() 
is often used

– for optimization → 
@BypassInterceptors is 
not suitable everywhere

– in integration code

 CDI
◽ is possible via built-in 

bean Instance1 (requires 
injection though)

◽ or BeanManager2 

◽ should not be needed in 
application code 
anyway :-)

1 javax.enterprise.inject.Instance
2 javax.enterprise.inject.spi.BeanManager



Seam 2 → CDI 24/40

IoC

Seam bijection vs CDI injection
 time for a very simple live demo!
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IoC

Java EE integration
 Seam

◽ only Seam components 
support bijection

 CDI
◽ all Java EE 6 components 

supporting injection1 may 
inject beans via the 
dependency injection 
service,

◽ however their lifecycle is 
not managed by CDI;

◽ components supporting 
injection include: servlets, 
servlet filters and 
listeners, JSP tag handlers, 
JAX-WS endpoints, ...

1 See JSR 316 – EE.5.2.5 Annotations and Injection 
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Factory methods vs
producer methods/fields
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Factory methods vs producer methods/fields
Diff #1 - names
 Seam

◽ component name 
required

– use @Factory.value() ,

– if not specified → derived 
from method name

 CDI
◽ name not required

– typesafe resolution :-)

– may be assigned via 
@Named



Seam 2 → CDI 28/40

Factory methods vs producer methods/fields
Diff #2 – parameter injection
 Seam

◽ not available

 CDI
◽ producer method → all 

parameters are injection 
points
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Factory methods vs producer methods/fields
Diff #3 - outjection
 Seam

◽ instead of returning 
value, factory method 
may have void return 
type and use outjection 
to set variables into the 
context

 CDI
◽ not available
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Factory methods vs producer methods/fields
Diff #4 – producer fields
 Seam

◽ not available

 CDI
◽ a producer field is 

a simpler alternative to a 
producer method

◽ usefull for Java EE 
component environment 
injection
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Events
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Events
Diff #1 – event type
 Seam

◽ type is string-based

◽ parameters are optional

 CDI
◽ event is an instance of a 

concrete Java class

– the event types include all 
superclasses and 
interfaces of the runtime 
class of the event object 
→ observer resolution is 
typesafe
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Events
Diff #2 – raising/firing an event
 Seam

◽ raise via Events 
component,

◽ or declaratively

– use an annotation 
@RaiseEvent

– navigation rules 
configuration; pages.xml

 CDI
◽ fire via an instance of the 
Event1 interface,

◽ or BeanManager

◽ it's not possible to fire 
declaratively

1 javax.enterprise.event.Event
2 javax.enterprise.inject.spi.BeanManager
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Events
Diff #3 – features
 Seam

◽ asynchronous and timed 
events via Dispatcher 
component

– EJB TimerService,

– or Quartz Scheduler 
impl

◽ transaction aware events 

 CDI
◽ does not specify 

asynchronous events

– try using EJB 
@Asynchronous observer 
methods

◽ does not specify timed 
events

◽ transaction aware events
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Interceptors
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Interceptors
Diff #1 – the concept 
 Seam

◽ much of the functionality 
of Seam is implemented 
as a set of built-in Seam 
interceptors1

◽ Seam defines 

– its own API to create 
custom interceptor for 
JavaBean components, 

– and EJB 3.0 “adaptation 
layer”

 CDI
◽ follows Interceptors 1.1 

specification

– part of EJB 3.1 spec2

◽ defines a typesafe 
mechanism for 
associating interceptors to 
beans using interceptor 
bindings

1 See org.jboss.seam.core.Init#DEFAULT_INTERCEPTORS
2 JSR 318
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Interceptors
Diff #2 – binding and enablement  
 Seam

◽ bind to a component with 
custom annotation

◽ interceptors are registered 
and enabled automatically

◽ order is defined via 
@Interceptor annotation
– around, within attributes

 CDI
◽ bind to a bean with 

custom annotation
◽ an interceptor must be 

explicitly enabled by 
listing its class under the 
<interceptors> element 
of the beans.xml file for 
each bean archive1

◽ the order of the 
interceptor declarations 
determines the 
interceptor ordering

1 https://issues.jboss.org/browse/CDI-18

https://issues.jboss.org/browse/CDI-18
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Interceptors
Diff #3 – decorators 
 Seam

◽ no such functionality is 
supported

 CDI
◽ similar to interceptors1,

◽ but don't have the 
generality of an 
interceptor,

◽ intercept invocations only 
for a certain interface,

◽ and directly implement 
operations with business 
semantics

1 See JSR 299 - Chapter 8. Decorators
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Questions?
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The End

Thanks for listening

Resources:
● Seam 2 documentation: http://docs.jboss.org/seam/latest/reference/en-US/html/

● Seam 2 to Seam 3 Migration Notes: 
http://seamframework.org/Seam3/Seam2ToSeam3MigrationNotes

● CDI Specification (JSR 299): http://jcp.org/en/jsr/summary?id=299

● Weld documentation: http://docs.jboss.org/weld/reference/latest/en-US/html/

● Java EE 6 Specification (JSR 316): http://jcp.org/en/jsr/summary?id=316

● Weld, CDI and Proxies: 
https://community.jboss.org/blogs/stuartdouglas/2010/10/12/weld-cdi-and-proxies

http://docs.jboss.org/seam/latest/reference/en-US/html/
http://seamframework.org/Seam3/Seam2ToSeam3MigrationNotes
http://jcp.org/en/jsr/summary?id=299
http://docs.jboss.org/weld/reference/latest/en-US/html/
http://jcp.org/en/jsr/summary?id=316
https://community.jboss.org/blogs/stuartdouglas/2010/10/12/weld-cdi-and-proxies
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