

Rafael Schloming (Red Hat)

Gordon Sim (Red Hat)

František Řezníček (Red Hat)

Friday 17th February, 2012

TOWARDS UNIFIED MESSAGING

Agenda
● The quiz

● Asynchronous Messaging: What is it? Why use it?

● AMQP: The missing protocol?

● Apache Qpid: Open Source AMQP Messaging

● Red Hat Enterprise MRG

● Join us!

● Discussion

The quiz for professionals

● What do have in common following dates?
What happened those days?
● 31st August 2011
● 7th October 2011

The quiz for dummies

● What is the other term commonly used for
AMQP software server (qpidd)?

An open and pervasive messaging
infrastructure offering rich capabilities for

developing distributed systems

AMQP 1.0

Asynchronous Messaging: What is it?

● An abstraction for communication that is:

● Higher level than sockets

● More flexible than RPC or distributed objects

● More general than HTTP

● More complete than SMTP or XMPP

Asynchronous Messaging: Why use it?
● Natural fit for events, notifications and coordination

● Enables intermediation

● Decouples communicants “in space and time”

● Separation of concerns

● Avoid implementing mechanics; retain control over policy

Asynchronous Messaging: The
Fundamentals

● Message as the 'unit' of communication

● Transfer of responsibility

● Flow control

● Addressing

Asynchronous Messaging: The
Fundamentals

● Message as the 'unit' of communication

● Payload (body data)

● Standard annotations (i.e. headers or properties)

● message identity & correlation
● description of message (e.g. subject) and payload (e.g. content-type)
● reply-to address, identity of publisher, time to live etc

● Application defined annotations

● Transfer of responsibility

● Flow control

● Addressing

Asynchronous Messaging: The
Fundamentals

● Message as the 'unit' of communication

● Transfer of responsibility

● Acknowledgements & 'in-doubt' messages

● Replay, de-duplication & idempotence

● Delivery guarantees: at-least-once, at-most-once, exactly-once

● Flow control

● Addressing

broker

client c++client python

client java

client .NET

Asynchronous Messaging: The
Fundamentals

● Message as the 'unit' of communication

● Transfer of responsibility

● Flow control

● Propagates receiver's constraints to sender

● Sender can transmit knowing receiver is operating within its limits

● Aids efficiency and reliability.

● Addressing

Asynchronous Messaging: The
Fundamentals

● Message as the 'unit' of communication

● Transfer of responsibility

● Flow control

● Addressing

● What messages go where?

● Address as alias for specific routing path:
● sender► Exchange►Binding►Queue ►receiver
● sender► Address ►receiver

● In messaging an address is a rendezvous point

● Competing v non-competing consumers

Standardizing Asynchronous Messaging

● JMS is not sufficient

● An API not a protocol
● Leads to closed systems where all components are from the same

vendor

● Language specific (java)

● Need a wire level protocol to achieve full potential

● Combine components from different vendors, written in
different languages

● Achieve network effects and create a new ecosystem

● To be universal need to be simple and flexible

AMQP: Standardized asynchronous
messaging

● http://www.amqp.org

● Evolving for past 5 years (driven by actual
implementations in real deployments)

● Final 1.0 specification released in October 2011

● Open alternative to JMS and WCF

AMQP: Working group members
Bank of America,

Barclays Bank PLC,

Cisco Systems,

Credit Suisse,

Deutsche Börse Systems,

Goldman Sachs,

HCL Technologies Ltd,

INETCO Systems Limited,

Informatica Corporation,

JPMorgan Chase Bank Inc.,

Microsoft Corporation,

VMware, Inc.,

Novell,

Progress Software,

Rabbit Technologies Ltd.,

Red Hat Inc.,

Software AG,

Solace Systems Inc.,

StormMQ Ltd.,

Tervela Inc.,

TWIST Process Innovations Ltd,

WS02 Inc.

29West Inc.

AMQP 1.0: Failure handling fundamentals

● Identity
● Serial Numbers, UUIDs, DB Keys, Semantic Keys, ...

● Retry

● Deals with possible loss
● Line noise, congestion, hardware failure

● Generates duplicates

● Deduplication

● Requires Identity (message property)

AMQP 1.0: Failure handling fundamentals

● Network protocols make a particular choice
● If this doesn't fit your application, you're out of luck.
● Hence the proliferation of application specific protocols

built on TCP ► mess of non-universal protocols

● AMQP leaves the choice up to the application
● The application can focus on domain semantics rather

than communication semantics
● Essential for universal messaging protocol ► flexibility

AMQP 1.0: Endpoint State

Connection Endpoint

Session Endpoint

Link Endpoint

ReceiverSender SourceTarget

Terminus

Application

Protocol State Application State

0..n

0..n

0..1 0..1

0..n

AMQP 1.0: Terminology

● Logical “overlay” network of Nodes & Links
● Nodes are points in the AMQP network that can produce,

consume, relay, or even transform messages
● Links are unidirectional paths on which messages can flow

between Nodes
● Physical “underlay” network for active communication

● Connections, Sessions, Links
● Links divided into logical and physical aspects

● Terminus vs Link Endpoint

AMQP 1.0: An Overview

● Protocol primitives (performatives)
● open connection parameters negotiation

● begin session start on channel

● attach attach link to session

● transfer transfer a message

● disposition inform peer about delivery changes

● flow update link state

● detach detach link from session

● end session end

● close close connection

Setup

Message Transfer

Teardown

AMQP 1.0: Protocol Primitives

● Informational rather than instructional
● Indicate facts about the endpoint state

● No lock-step dependencies
● Semantics of incoming and outgoing frames decoupled

to the greatest extent possible

● Easily Pipelined
● Permits low per connection overhead

AMQP 1.0: Setup & Teardown

● Establish shared context for communication
● Connection, Session, & Link Endpoints

● Connection: open/close
● Session: begin/end
● Link: attach/detach

● Setup/Teardown primitives are all “bookends”
● Intervening transfers inherit context established by open,

begin, and attach

Endpoint A Endpoint Bopen begin attach transfer detach end close

AMQP 1.0: Setup & Teardown

● Open – establishes properties of sending connection
endpoint and binds container-id to physical connection
● Includes basic facts, e.g. idle-timeout
● Includes capabilities and limitations, e.g. channel-max

● Begin – establishes properties of sending session
endpoint and binds session to channel

● Attach – establishes properties of sending link
endpoint and binds link to handle

● Detach/End/Close – resource recovery and error
codes

AMQP 1.0: Message Transfer

● Transfer – transmits message data

● Flow – communicates flow control state
● Indicates available capacity at receiver
● Indicates available transfers at sender

● Disposition – communicates outcome & settlement of
transfer
● Outcomes – Accepted, Rejected, Released
● Settlement – transfer is done

AMQP 1.0: Flow Control

● Propagates Receiver's constraints to Sender

● Two important categories of use
● Network

● Prevents redundant transmission
● Enables maximum utilization of resources

● Semantic
● Unique to AMQP

Sender Receiver

AMQP 1.0: Flow Control

Sender Receiver

● Credit based scheme
● Models receiver capacity at any given point
● Advisory, enables simplistic implementation

● Augmented to indicate
● Messages available at sender
● Transient nature of receiver's capacity

● Use it or lose it

AMQP 1.0: Messages

● AMQP defines the “bare” message as supplied by the
application to consist of:
● Standard Properties, Application Properties, and an

opaque Body
● The “annotated” Message as produced by the network

also includes:
● Header & Footer Properties

● Properties are encoded using the AMQP type system

● The type system may also be used in the body

AMQP 1.0: Type System

● Goals of the type system
● Expose enough of the message structure to AMQP

infrastructure to enable key capabilities
● Semantic Routing & Filtering, Message Archival, ...

● Permit structured data exchange between endpoints
written in different languages

● JMS, WCF, Python, C++, Ruby, ...

● The type system is itself used to define all the protocol
primitives

Apache Qpid: Open Source AMQP
Messaging

● http://qpid.apache.org

● AMQP for everyone
● Open source
● Open community
● Not controlled by any vendor

● The 'M' in Red Hat MRG

Goals of the Qpid Project

● Conceptually consistent API across a wide variety of
languages

● Pluggable & composable IO

● Wide platform support

● Blocking & Non-blocking API
● Easy to integrate
● Support different threading models

● Support for structured messages

Apache Qpid: The messaging API

TCP

RDMA

Other

C
on

ne
ct

io
n

S
es

si
on

SessionA SessionB SessionC

Sender

Sender

Receiver

Receiver

Receiver

Receiver

5 key classes:

● Connection
● Session
● Sender
● Receiver
● Message

Apache Qpid: The messaging API

TCP

RDMA

Other

A connection provides
a transport for getting
messages across the
network

It may for example use a TCP
socket underneath, but other
transports such as RDMA are
possible.

C
o

n
n

ec
ti

o
n

S
es

si
on

SessionA SessionB SessionC

Sender

Sender

Receiver

Receiver

Receiver

Receiver

Apache Qpid: The messaging API

TCP

RDMA

Other

Several sessions can be
multiplexed over a
connection

C
on

ne
ct

io
n

S
es

si
o

n

SessionA SessionB SessionC

Sender

Sender

Receiver

Receiver

Receiver

Receiver

Each session may have
zero or more senders,
through which outgoing
messages are sent

Each session may have
zero or more receivers,
through which incoming
messages are received

Apache Qpid: Hello World!

from qpid.messaging import * #1

connection = Connection("localhost:5672") #2
try:
 connection.open()
 session = connection.session() #3
 sender = session.sender(“my-queue”) #4
 receiver = session.receiver(“my-queue”) #5
 sender.send(Message("Hello world!"), #6
False)
 message = receiver.fetch(timeout=1) #7
 print message.content
 session.acknowledge() #8
except MessagingError,m:
 print m
finally:
 connection.close()

using namespace qpid::messaging; //1

int main(int argc, char** argv)
{
 Connection connection("localhost:5672"); //2
 try {
 connection.open();
 Session session = connection.createSession(); //3
 Sender sender = session.createSender(“my-queue”); //4
 Receiver receiver = session.createReceiver(“myqueue”);
 sender.send(Message("Hello world!"), false); //6
 Message message = receiver.fetch(Duration::SECOND*1);//7
 std::cout << message.getContent() << std::endl;
 session.acknowledge(); //8

 connection.close();
 return 0;
 } catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
 connection.close();
 return 1;
 }
}

python client c++ client

Red Hat Enterprise MRG

● Red Hat Enterprise MRG consist of

● Messaging
● AMQP asynchronous messaging system
● Based on Apache Qpid

● Realtime
● Realtime kernel
● Based on Real Time “rt” kernel project

● Grid
● High-performance and high-throughput grid computing
● Based on Wisconsin's project Condor

Join us in building an open, rich and pervasive

messaging infrastructure!

http://qpid.apache.org

Join us in making sure MRG / Messaging is
high-quality enterprise messaging infrastructure!

http://redhat.com/careers

Join us!

http://qpid.apache.org/

Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

