
Btrfs
Design, Implementation and the Current Status

Red Hat

Lukáš Czerner

February 18, 2012

Copyright © 2012 Lukáš Czerner, Red Hat.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included
in the COPYING file.

Agenda

1 Btrfs and its place in the Linux file system world

2 Design and implementation of Btrfs

3 Btrfs Features

4 Current status

5 Who writes Btrfs

Part I

Btrfs and its place in the Linux file system
world

Linux file systems

Linux kernel file systems

There are approximately 55 kernel file systems in Linux kernel
tree

A lot of them has limited or specific use

ExtN file system family considered the only ”general purpose
file system” for a long time

Most active local file systems = xfs, btrfs, ext4

Linux file systems

Linux kernel file systems challenges

Scalability - ability to grow and remain efficient

ext4 just breached 16TB limit
xfs scale up to 200TB and more

Reliability - ability to recover from incidents

Silent data corruption
Metadata corruption tolerance
File system repair on huge file systems

Advanced Features - more than just storing data

Snapshotting
Encryption

Ease of use - reduce administration overhead

Growing storage stack - administration overhead

Place for Btrfs

What Btrfs has to offer ?

Scalability
Does not have fixed positions for metadata (mostly)
16 EiB file/file system size limit

Reliability
Very fast file system creation
Possibly very fast file system check
Data + metadata checksumming
Incremental backup + snapshotting
Online scrub to find and fix problems

Advanced features
Integrated volume management (RAID)
Integrated snapshotting support
Reflink

Ease of use
Integrated easy-to-use volume management

Brief history of Btrfs

The idea

IBM researcher Ohad Rodeh at Linux Storage and File system
workshop 2007

COW friendly btree

Leaves can not be linked to their neighbors
Reference counting for easy tree cloning
Proactive merge/split

Brief history of Btrfs

The file system

Chris Mason liked the idea of COW friendly Btrees

Lot of previous experience from Reiserfs

Using COW btree for every object in the file system

COW advantages for free

Part II

Design and implementation of Btrfs

Design

Generic btree implementation for all objects

The tree does not care about object types

Each tree block carries header and key
Header stores the location on disk + pointers to other blocks
The key defines order in the tree block layout

Regardless on the operation btrfs uses the same code path

Reads
Writes
Data / Metadata allocation

File system layout

Superblock

Stored on all devices

Mirror copies of superblock kept up-to-date (not in SSD case)

Main trees positions

root tree
chunk tree
log tree

File system layout

Everything is stored in Btrees

Single btree manipulation code

Few different types of trees

1 root tree - roots of other trees
2 chunk tree - logical to physical mapping
3 device allocation tree - device parts into chunks
4 extent allocation tree - file system wide
5 fs tree - inodes, files, directories
6 checksum tree - block checksums
7 data relocation tree
8 log root tree

Each tree has its own specific ID

Only leaves stores the actual data

File system layout

Leaves and nodes

Every tree block is either leaf or node

Every leaf and node begins with the header

Nodes [header, key ptr0....key ptrN]

struct btrfs_node { struct btrfs_key_ptr {

struct btrfs_header header; struct btrfs_disk_key;

struct btrfs_key_ptr ptrs[]; __le64 blockptr;

} __le64 generation;

}

Leaves [item0....itemN] [free space] [dataN...data0]

struct btrfs_leaf { struct btrfs_item {

struct btrfs_header header; struct btrfs_disk_key key;

struct btrfs_item items[]; __le32 offset;

} __le32 size;

}

Part III

Btrfs Features

Transactions

Transactions in Btrfs

There is no journal as extN, or xfs has

COW is used to guarantee consistency

On fs tree or extent tree modification

1 Tree is cloned and the branch in question is copied and
modified

2 New roots are added into root tree (identified by transaction
ID)

3 New root of root tree added into superblock
4 Wait on all respective data and metadata to hit the disk
5 Commit the superblock to the disk
6 Original trees can be freed (decrease refcount)

In case of crash, the original root tree is used (the one in the
most up-to-date superblock)

Snapshots

Snapshots in Btrfs

Can be read only, or read write

If read only - block quota set to 1

Snapshots are subvolumes
Share parts of the original root

Created the same way as described in transactions

The original tree is not automatically freed

Can be used in the same way as any subvolume

Can be created instantly at any point in time

Checksums

Checksums in Btrfs

Both metadata and data are checksummed

Checksummed blocks of different sizes (data extents)

Calculated only before written out to the disk

Data + Metadata can be verified after read from disk

Improves reliability

Online failover

Online scrub

Online scrub

File system scrub

Using checksums to validate all data + metadata

Can fix errors if possible (mirror setup)

Works online at a background

start, cancel, resume, status

btrfs scrub start [-Bdqr] {<path>|<device>}

Volume management

Volume management

Multi-disk support

Easy to add / remove drives - pooling
Multiple extent allocation trees
Raid0, Raid1, Raid10

Subvolumes

Multiple fs roots allows creating multiple subvolumes
Each subvolume appears as directory in root volume
Create snapshot of a subvolume (snapshot of snapshot of ...)
You can easily mount a subvolume with -o subvol=<name>
or subvolid=<ID>
Users manage subvolumes in their subvolume
Easy-to-use management

File system check

File system check

It is ready now (sort of)

Should be really ready by this summer (maybe)

Has ambitions to be really fast

Memory consumption should be quite low

And more

And more

Online defragmentation

Online balancing

Transparent compression

Data deduplication

Data encryption

Volume balancing

Part IV

Current status

What is already done ?

What is already done ?

Online defragmentation

Online balancing

Compression

Free space cache

Reflink

Recently modified files

Offline file system check (sort of)

What is still missing ?

What is still missing ?

Offline file system check

Raid 5/6

Deduplication

Encryption

Fragmentation problem ?

More testing and stabilization

Part V

Who writes Btrfs?

Who writes Btrfs?

Who writes Btrfs for the last year?

637 commits

38658 lines changes (26160 inserted, 12498 deleted)

Contribution from 63 developers from the last year

Josef Bacik (Red Hat)
Li Zefan (Fujitsu)
Chris Mason (Oracle)
Al Viro (Red Hat)
and more...

The end.
Thanks for listening.

	Btrfs and its place in the Linux file system world
	Linux file systems
	Place for Btrfs
	Brief history of Btrfs

	Design and implementation of Btrfs
	Design
	File system layout

	Btrfs Features
	Transactions
	Snapshots
	Checksums
	Online scrub
	Volume management
	File system check
	And more

	Current status
	What is already done ?
	What is still missing ?

	Who writes Btrfs?
	Who writes Btrfs?

